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The Hamilton action is obtained in explicit form as a function of the phase coordinates and time for certain 
classes of conservative systems. The applic&oa of the action function to problem of investigating the Stability 
of cmwxvative systems is considered, It is shown that fmm the repmentation of the Hamiltonian action 
fimction in explicit form one can draw US&II concluti~ regarding the qualitative nature of the bebaviour of 
the solutionsof the ~~~~e~. 

1. INTRODWCTION 

As we know [lft Lagrange’s equations 

d aL at 
__..._I 

dt atj aq 

o (14 

can be obtained from the condition for the Hamilton action to be stationary 

(l-2) 

which enables the action S to be regarded as a carrier of information on systems described by E3p (1.1). 

Starting &an this fact and assuming below that system (1.1) is conservative, we replace the fixed value fl by the 

current value f in the expssion for the action S, and we consider S as being a quantity which characterizes the 
true motion of the system-the action function 

(1.3) 

We will confine owsel~ to the case when t(p, $ E c”cL, x R”) (B is a region in e) and the solutions of system 
(1.1) with origin at Ls x R” are extended along the whole t f R axis. These conditions, without loss of generality 

in considering the problems investigated below, enable the action function S to be represented in the following 
form [2-4] 

If we use the Han&&n form of (1.1) 

then, using (1.4) and @5), the action fimctions S can a&o be written in the form 



1090 S. F! Sosnitskii 

The use of S in the form (1.4) or (1.6) turns out to be very effective when investigating the stability of con- 

servative systems [Z-4]. 
Since by the de~ition of the action function S itself 

dsldt- L(q,il) - L*(q,p) (1.7) 

by considering S in the form (1.6) as a function of the generalized coordinates q, the momenta p and the time t, 
and using (1.5) and (1.7) we obtain the equation 

as+dSE_aSE_ LL(q,p) 
at aq ap ap aq (l-8) 

The latter can be interpreted as linear first-order partial differential equation which the function S(t, q, p) must 

satisi$ 
As we know [S], every first-order partial ~e~nti~ equation has a solution which depends on an arbitrary 

function. Hence, the class of solutions of Eq. (1.8) is wider compared with the Hamilton action function S in the 
form (1.6). We do not rule out, in particular, that in a specific situation connected with the investigation of 

stability, it may turn out to be useful to use any solution of Eq. (1.8), which does not necessarily converge to the 
action function S(f, q, p). Nevertheless, we will confine ourselves below to considering classes of conservative 
systems for which it is the action function S that can be determined explicitly. 

2. LINEAR SYSTEMS 

We will assume that the initial Iagrangian L has the form 

L-4 +I, +f,-~i*Ail+Wi+b(q) 

where A is a constant matrix, the quadratic form ir Ajr is positive-definite, the vector function f(q) is linear in q, 
and LO(q) is a quadratic form. 

By representing the Lagrangian L in the form 

(2.1) 

where H is the Hamiltonian corresponding to system (l.l), by (1.3) and (2.1) we have 

S=Mw& (2.2) 

Thus, in the case of linear Lagrangiau system one can calculate the Hamilton action function quite simply as a 
function of the phase variables and the time r. It is important to note here that to obtain expression (2.2) we do 
not use the fact that the system is conservative. This enables us to conclude that expression (2.2) also holds for 

non-autonomous Lagrangian linear systems. 
Since the function S in the form (2.2) does not depend explicitly on t, from the expression 

z - ,!, = +prA-‘p+ r, -ffrA-‘I (2.3) 

we arrive at a linear aualogue of Pozharitskii’s criterion [6], which was then generalized to extremely non-linear 
systems in [7,8]. 

As we will show below, in the non-linear case also there are systems for which no probiem arises in ~~~lat~g 
the Hamilton action function S in explicit form. 

3. NATURAL SYSTEMS 

In the case considered the Lagrangian is defined by the expression [l] 
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L-T(q,~)-n(q)-MciTA(q)il-n(q) (34 

where the quantity T(q, 4) corresponds to the kinetic energy of the system and II(q) corresponds to the potential 

energy of the system. 
We will assume that the following systems are satisfied: (1) A is a constant matrix, and (2) ll(q) = l&(q) is a 

homogeneous function of degree k: II&) = h&(q). 
Since, taking (2.1) into account, in this case 

L = (pq)’ + qarI#q -H (3.2) 

from (3.2) and Euler’s theorem on homogeneous functions, we have 

L=(pq)‘+kIIk_H=(W)‘+k17ik12+k(nt -h)l2+kh/2-H=(pq)‘-kL.l2+h(k/2-1) (3-3) 

From (3.3) we obtain 

s k-2 -&q&+hk,2t, k*-2. (3.4) 

As can be seen, the phase variables q and p and the time in expression (3.4) are separated. If, in particular, we 
put k = 2 in (3.4) we arrive at (2.2). 

Ifk = -2, then in the scheme considered, it is not possible to determine the action function 5” in explicit form. 

We can prove that the function S in the forms (2.2) and (3.4) provide examples of integrals of partial differential 
equation (2.8). 

Since in the n-body problem [9] the Iagrangian L satisfies the above conditions 1 and 2, in this case, at least 

four non-singular trajectories, excluding collision between bodies, from (3.4) (in which we must put k = -1) we 
have 

S=2pq(,-3ht (3.5) 

In particular, we can con&de from (1.3) and (3.5) that Lagrange stability in the n-body problem can only occur 
when T + II = h < 0, since along any trajectory of the system considered the Lagrangian L is non-negative and, 

therefore, when h > 0 and t -+ 00, pq also tends to intinity by (3.5). 
This conclusion, which is based on representation of the Hamilton action function in explicit form, reflects the 

meaning of Jacobi’s theorem on the negativeness of the energy for Lagrange-stable motions in the n-body 

problem [lo, 111. 
Expression (3.4) obtained above for the action function S relates to the whole region in which solutions of the 

natural system considered exist. If we confine ourselves to a local investigation of natural systems, for example, in 
the neighbourhood of the position of equilibrium, an expression for the action function can also be obtained with 
more general assumptions regarding T(q, q) and II(q). 

Thus, without loss of generality we will assume that the point q = 4 = 0 is the position of equilibrium in 
question. We will assume that T(q, ;i, = &4(q)& and the quadratic form qrA(O)cjl .is positive definite. Suppose, 
moreover, that the function II(q) can be represented in the form 

l-ml) = q&) + ou-&) (3.6) 

where lI, is a homogeneous function of power m > 0. 

Assertion 1. If the potential energy l-l(q) of the natural system at the point q = 0 has a strict local m~um 
which is determined by the term II,,, in Eq. (3.6) then V(q, 4) E s, = {(q, 4) E Dq x R,?: Ilq CB 411 c ~1 and the 
Hamilton action function is given by the expression 

(3.7) 
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limq(c)-Q. p-5 
E’O 

Proof. Fo~~g the scheme described above we have 

L - (pq)’ -~L+,qaTfaq+~(llqilm)+hlLI-l\ 
\2 1 

Since qi%Bq = u(T), the Iast equation can be represented in the form 

(3.8) 

Since under the conditicms of Assertion 2 aceor&mg to the theorem on the mean 112 p. 6001 the following 

equality holds 

(3-9) 

where h = 4L) I tq, p) E J.ar t E I n R* and f is the maximum intmvd within which the solution (q, P) belongs to the 

neighbourhood s, then from (3.8) and (3.9) we arrive at (3.7). 

Note. Lyapunov [13] used the function V = ~q to prove instability under the conditions of Assertion 1. This 
function, apart from a constant factor, which, however, has no effect on the properties of the auxiliary function, 
corresponds to the primitive for the Grst term in (37). ffwe take into account the fact that the oonchrsiin &at the 
equilibrium in this case is unstable foiiows from the representation of the action function S itself in the form (3.7), 
since, on the one hand L S Jh 1 and on the other 1 (m - 2)/(m + 2) J < 1 and, therefore, as t + ~1 the quantity ~q, 
by (3.7) also tends to infinity, then the choice of pg as the Lyapuuov function seems completely natural. 

Asserrion 2. If the potenti& energy II(q) is a uniform function of degree m > O(Il(q) = lTm(q)), then, when there 
is no local minimum of the function XI(q) at the point q =oand(q,$o Q-= ~~q,~~~~~~~+~~q)=~ 
< 0) we have equality (3.7). 

lb prove Assertion 2 it is sufficient to note that when (q, 4) E R- the Lagrangian L is positive, so that we can 
use the same discussion that was used to prove Assertion 1. 

Under the conditions of Assertion 2, as in the previous case, the instability of the equilibrium follows from the 

representation of S in the form (3.7), since L 5 Ih f when (q, 4) Q Q-* and hence p9 approaches infin& by (3.7), 
whenh < Oandt+=, 

Thus, when the conditions of Assertions 1 and 2 are satisfied, which are identical with the conditious of 
Lyapunov’s [13] and Chetayev’s [14] theorems, respectively, on the instabiity of equiiiirhrm, we can also obtain 
explicit expressions for the Hamilton action function S. However, they are of a lecai character and in a certain 

sense contain an element of uncertainty. This is due to the fact that, as regards the quantity u(e), we can only say 
that it is small and can be c&x&ted in the ~~~~urh~ of s,, but in practice we cannot specify exactly the point 
of the nei@ourhood s, at whiih n(a) is satisfied. 

4. THE STABILITY OF THE EQUILIBRIUM OF NATURAL SYSTEMS 

The procedure for obtainhrg the action function S in the form (1.4) or (1.6) described in [2-4] assumed the 
property of system (1.1) to be the Bow (flS], p* 347). When carrying out caiculatians for the function S of erqxes- 
sions (3.4) and (3.7) this property was in no way used This enabies us to conclude that for systems of this class, 
equalities (3.4) and (3.7), taking the method by which they were obtained into account, remains true when there 
are minimal limitations on the smoothness of the corresponding Lagrangians. In particular, they old when L E 
C', when only the existence of solutions is ensured, and nevertheless the definition of the Hamilton action 

function retains its meaning. 
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We will confine ourselves below to a more detailed consideration of systems with a negative homogeneous 

potential having its own specifk feature and has been less investigated compared with systems in which II(q) is a 

positive homogen~~ function. 

TIreom 1. Suppose L(q, t$ E Ci(D x Z?) and the following conditions are satisfkxlz (1) n(q) = Q(q), IT&q) 

= &-Q.(q), (2) k < 0, and (3) aT/aq = 0. 
Then, unstable positions of equilibrium of system (1.1) (3.1) correspond to critical points of the function n(q) 

in the region D C I?‘. 

Fkx$3y condition 1 we have 

and, therefore, at critical points of the function II(q), if they exist, IT(q) = 0. 

Assuming further that the set 0 of critical points II(q) is non-empty 

and fixing one of them q = q*, we can show that the position of equilibrium q = q*, i = 0 under the conditions 

of Theorem 1 is unstable. 
We note tirst that the relation (pq) = 2/t follows from (3.3) ifk = -2. Therefore, in the situation when fh f # Op the 

expressionpq em be regarded as a Iyapunov functions which enables us to conclude that the position of equilibrium 

q=q*i = 0 considered is unstable. IIence, we will distinguish two cases below: (1) k < -2 and (2) -2 < k < 0. 
Suppose k < -2. We will first assume that in the neighbourhood of the critical point q = q* we have H(q) a 0. Then, 
taking into account the fact that in this case 1.L 1 z h > 0, (k - 2)/(k + 2) > 1, using (3,4) we arrive at the conclusion 
that the quantity pq increases without limit as C + m and for h > 0 as small as desired. Consequently, the position 
of equihbrium q = q+, + = 0 is unstable since the assumption contradicts the definition of stability. 

If the potential energy IX(q) can be taken to have negative values, then assuming h < 0 and noting that in this 
case L * 1 h 1, {k - 2)@ + 2) > 1, as above, using (3.4) we arrive at the conclusion that the quantity 1 pq 1 increase 
without limit as t + 0 and hence the equilibrium q = q*, tj = 0 h unstable. 

When -2 < k c 0 we add the quantity hr to both sides of (3.4). We thereby obtain 

(4-I) 

Assuming that h > 0 in (4.1) and noting that k/(k+2) < 0, we conclude from (4,l) that the quantity pq increases 

without limit when t + m. 
Thus, under the conditions of Theorem 1 the position of ~q~~ibriurn q = q*% tj = 0 cannot be stable. Theorem 

1 is proved. 

Cor&ty 1. If we put k = -1 in condition 2 of Theorem I, we arrive at the conclusion, which is the essence of 
Ekrnshaw’s theorem [16], according to which a stable static configuration of electric charges is impossible. 

Comflary 2 Critical points of a negatively homogeneous function of class C’ cannot be points of its strict local 

extremum. 
The particular feature of the n-body problem [9] and of the probiem of the intera~ion of electric charges fI6] 

is the fact that the correspanding potential energy II(q) satisfies Laplace’s equation 

Al-I(q) = 0 (4.2) 

It turns out that if the constraint (4-2) hoids, we can say that the ~i~urn is unstable without the requirement 
for the potential to be homogeneous. 

l?ze~rc~ 2. Suppose L(q, i), E C2(D x ff) and M(q) = 0. 
Then, isolated critical points of the function II(q) in the region D C Ran, if they exist, are unstable positions of 

equilibrium of system (1. I), (3.1). 
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Proof. Assuming that the potential energy n(q) is defined apart from a constant, without loss of generality we 
can regard the critical point q* considered as belonging to the zero-level set of the function, n(q). We can 

conclude from the fact that II(q) is harmonic [17] that q* cannot be a point of local extremum of the function 

II(q). We obtain as a consequence that 

Since the critical point q* of the function n(q) is assumed to be isolated, we can further use one of the theorems 
given in [2-4] on the instability of the equilibrium of conservative systems, and on the basis of these we can 

conclude that Theorem 2 holds. 

Note. The theorem will remain true if the condition for the critical points of the function II(q) to be isolated is 

replaced by the condition that the level sets of the function n(q), containing critical points, are isolated, which 
results from the method of proving the theorems of instability, proposed in [2,3], based on the use of Hamilton’s 

action function. 
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